- Cet évènement est passé
Journée de l’équipe GADT
mars 8 @ 08:00 -16:30
9h30-10h30 Théo MartyFlot de Reeb-Anosov en dimension 3Les flots d’Anosov représentent une famille importante de systèmes dynamiques (hyperbolique). Il existe plusieurs constructions de flots d’Anosov en dimension 3: suspension (hyperbolique), flot géodésique (hyperbolique) et chirurgie de diverses natures. J’expliquerai plusieurs de ces constructions. Je parlerais ensuite d’un lien entre certains flots d’Anosov et la géométrie de contact (et les flots de Reeb).10h45-11h45 Thomas DreyfusTranscendance différentiel et théorie de GaloisDans cet exposé nous verrons comment la théorie de Galois différentielle permet, sur de larges classes d’exemples, de prouver qu’une fonction solution d’une équation fonctionnelle ne satisfait pas d’équations différentielles.13h30-14h30 Keyao PengAn Introduction to A1(motivic) homotopy theory.We will show how you can apply homotopy theory in algebraic geometry, and how to translate a result of algebraic topology to the world of (abstract) algebraic geometry.Nous finirons par des exposés de doctorants, principalement en premier année, qui nous introduiront leurs sujets de thèse.15h-15h15 Felipe MonteiroLogarithmic sheaves on projective spaces.Logarithmic tangent sheaves associated to polynomials can be classically defined as kernels of the map induced by the gradient of these polynomials. Following the work of D. Faenzi, we investigate possible generalizations of the classical theory of logarithmic tangent sheaves for a regular sequence of polynomials, considering the Jacobian matrix associated. From this generalization, new behaviours appear, such the dependence of choice of generators of a regular sequence, and the behaviours of the classical setting such as stability and freeness properties can be generalized in this setting. This presentation will briefly review some of the aspects of the classical theory of logarithmic tangent sheaves of divisors, to then make some comments between the generalized setting for complete intersections.15h15-15h30 Crislain KusterFoliations on homogeneous varietiesA holomorphic foliation of dimension r on an algebraic variety 𝑋 consists of a decomposition of 𝑋 into a disjoint union of subvarieties of dimension r, satisfying specific compatibility conditions. On the other hand, an algebraic variety is said to be homogeneous if it admits a transitive action of an algebraic group. Projective spaces and Grassmannians are examples of homogeneous varieties. In this talk, I’ll present my thesis problem, which is related to codimension one foliations on homogeneous varieties.15h30-15h45 Victor ChachayDu compte des 27 droites aux invariants motiviquesEn retraçant le comptage des 27 droites d’une surface projective cubique complexe, je vais expliquer comment nous essayons de traduire ceci pour trouver un invariant sur d’autres corps et pour d’autres surfaces.15h45-16h Hidir-Deniz YeralTowards a factorization homology construction of 3-manifold invariantsSince their axiomatization by Atiyah in ’88, topological field theories (TFTs) have developed into a bridge between topology and representation theory. One goal of my thesis is to give a construction of the 3-manifold invariants coming from an important class of three-dimensional TFTs, namely the Reshetikhin-Turaev construction and its non-semisimple generalization, via the factorization homology of surfaces. In this talk, I will explain the notion of a topological field theory and discuss some important examples in the three-dimensional case. I will also briefly introduce the concept of factorization homology and justify why it can be used to build three-manifold invariants.16h-16h15 Edwin KitaeffDimension des modules skein :Les modules skein auxquels nous nous intéressons sont des espaces vectoriels engendrés par les entrelacs en bande d’une 3 variété orientée donnée, modulos certaines relations locales, appelées relations skein, permettant la simplification de croisements et de composantes triviales (i.e. noeud bordant un disque dans le complémentaire de l’entrelac). La dimension de ces espaces vectoriels n’est pas toujours connue, nous allons étudier les différentes techniques pour estimer cette dimension.
https://indico.math.cnrs.fr/event/11723/
- wpea_event_id:
- indico-vnt-11723@indico.math.cnrs.fr
- wpea_event_origin:
- ical
- wpea_event_link:
- https://indico.math.cnrs.fr/event/11723/