Aller au menu Aller au contenu Aller à la recherche
aA - +Imprimer la page
Chargement Évènements

« Tous les Évènements

  • Cet évènement est passé

Guillaume Dalle (EPFL) « Deep learning meets combinatorial optimization – a tale of missing gradients »

janvier 24 @ 09:30 -10:30

Imagine you want to solve a maze. Easy peasy, Dijkstra’s shortest path algorithm gets the job done.Now imagine the maze is not given to you as a nice clean graph: instead, you only have a dirty satellite picture. No worries, let’s fire up a neural network to analyze the picture and extract relevant information.But here’s the challenge: deep learning models are trained with gradient descent, whereas combinatorial algorithms are fundamentally discrete. Building a hybrid pipeline using both ingredients is far from obvious, and yet it can be extremely useful for data-driven optimization tasks.This talk will introduce several ways to create differentiable layers from discrete solvers, thanks to a probabilistic perspective on the geometry of linear programs. It will also discuss the concrete implementation of these methods, and their performance on various benchmarks.

https://indico.math.cnrs.fr/event/10984/

Détails

Date :
janvier 24
Heure :
09:30 -10:30
Catégorie d’Évènement:
Site :
https://indico.math.cnrs.fr/event/10984/

Lieu

Salle René Baire (IMB)
Salle René Baire (IMB) + Google Map
wpea_event_id:
indico-vnt-10984@indico.math.cnrs.fr
wpea_event_origin:
ical
wpea_event_link:
https://indico.math.cnrs.fr/event/10984/

Log In

Create an account