- Cet évènement est passé
Bifurcations de cycles limites, problème du centre et espace des arcs de Nash
3 octobre 2019 @ 09:30 -11:00
Speakers: Jean-Pierre FRANCOISE (Paris VI)
This article introduces an algebro-geometric setting for the space of bifurcation functions involved in the local Hilbert’s 16th problem on a period annulus. Each possible bifurcation function is in one-to-one correspondence with a point in the exceptional divisor $E$ of the canonical blow-up $B_I{mathbb C}^n$ of the Bautin ideal $I$. In this setting, the notion of essential perturbation, first proposed by Iliev, is defined via irreducible components of the Nash space of arcs $ Arc(B_Imathbb C^n,E)$. The example of planar quadratic vector fields in the Kapteyn normal form is further discussed.
https://indico.math.cnrs.fr/event/4786/
- wpea_event_id:
- indico-event-4786@indico.math.cnrs.fr
- wpea_event_origin:
- ical
- wpea_event_link:
- https://indico.math.cnrs.fr/event/4786/