Aller au menu Aller au contenu Aller à la recherche
aA - +Imprimer la page
Chargement Évènements

« Tous les Évènements

  • Cet évènement est passé

Thomas Chouteau. On a discrete Painlevé II hierarchy via orthogonal polynomials: Lax pair and application to multicritical random partitions.

5 octobre 2022 @ 15:15 -16:15

In a recent article, Betea, Bouttier and Walsh presented a relation between higher order analogue of Tracy-Widom distribution and certain Toeplitz determinants describing the discrete gap probabilities in a multicritical random partitions model. Studying standard Riemann-Hilbert problem for orthogonal polynomials on the unit circle related to these Toeplitz determinants, we introduced a new Lax Pair for the discrete version of Painlevé II hierarchy. This hierarchy is obtained by studying compatibility condition for the Lax Pair and defined as a recursive operator iterated N-th times (2N-th is the order of the N-th discrete equation of the hierarchy).This work is based on a work in progress with Sofia Tarricone (UCLouvain). 

https://indico.math.cnrs.fr/event/8466/

Détails

Date :
5 octobre 2022
Heure :
15:15 -16:15
Catégorie d’Évènement:
Site :
https://indico.math.cnrs.fr/event/8466/

Lieu

Salle 318
Salle 318 + Google Map
wpea_event_id:
indico-event-8466@indico.math.cnrs.fr
wpea_event_origin:
ical
wpea_event_link:
https://indico.math.cnrs.fr/event/8466/

Log In

Create an account