Aller au menu Aller au contenu Aller à la recherche
aA - +Imprimer la page
Chargement Évènements

« Tous les Évènements

  • Cet évènement est passé

Harold Erbin: Machine learning for complete intersection Calabi-Yau manifolds

2 février 2022 @ 16:15 -17:15

In this talk, I will explain how to compute both Hodge numbers for complete intersection Calabi-Yau (CICY) 3- and 4-folds using machine learning. I will first make a tour of various machine learning algorithms and explain how exploratory data analysis can help in improving results. Then, I will describe a neural network inspired from the Google’s Inception model which, for the 3-folds, reaches nearly perfect accuracy for h11 using much fewer data and parameters compared to other approaches. I will then describe an improved architecture to compute 3 out of 4 Hodge numbers for the 4-folds with more than 95% accuracy. I will conclude by describing how more recent techniques could improve the computations of the remaining Hodge numbers and extract analytic information from the network.

arxiv: 2007.13379, 2007.15706, 2108.02221
https://indico.math.cnrs.fr/event/7096/

Détails

Date :
2 février 2022
Heure :
16:15 -17:15
Catégorie d’Évènement:
Site :
https://indico.math.cnrs.fr/event/7096/

Lieu

Salle 318
Salle 318 + Google Map
wpea_event_id:
indico-event-7096@indico.math.cnrs.fr
wpea_event_origin:
ical
wpea_event_link:
https://indico.math.cnrs.fr/event/7096/

Log In

Create an account