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Chapter 1

Introduction

This work reviews the main part of my scientific efforts in the last ten years and, as a whole
presents different takes on one overarching theme: dispersive partial differential equations.
Motivation to study these equations, at least for me, always comes from physics: they
model nonlinear phenomena in applications from water waves to hot plasma and from
Bose-Einstein condensates to optical phenomena. One small subset of these equations is
particularly fascinating: integrable systems. There is no generally accepted definition of
what an integrable system is, in most cases the features of these systems are called upon to
describe them. These include, but are not limited to, existence of infinite families of exact
solutions, the existence of infinitely many commuting flows and conserved quantities, or a
transformation of the system, under certain conditions, to a linear system. In the case of
dispersive systems there is a balance of the linear terms, that try to disperse a localised
mass, and the nonlinear terms, that try to concentrate it, so that these two forces are in
an equilibrium, and allow for infinite families of exact solutions.

The exposition in the present work follows the timeline in which I worked on different
topics quite closely. For me this is not only convenient, but also a natural way to present
the topic: as my understanding grew I have looked into questions that arose along the
way. The exposition is arranged along different ideas and methods that are used in the
study, however these remain different perspectives on the same subject. We begin with
hydrodynamic type systems, also called dispersionless systems. This area has somewhat
simple origins and can be looked at as a development of possibly the simplest PDEs: a
first order equation with constant coefficients in two dimensions

ut − aux = 0.

Throughout this work I use the standard short notation, where partial derivatives are
denoted by subindicies and the independent variables are generally omitted unless necessary
i.e. u = u(x, t). The above equation can be solved by the method of characteristics to find
that u = f(x− at) for every function f . Things become somewhat more interesting when
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2 CHAPTER 1. INTRODUCTION

we consider a nonlinear equation, for example the Hopf equation

ut − uux = 0. (1.1)

Here the general solution, is given by u = f(x − ut) and it is an implicit solution, which
cannot be made explicit for f in general position. As a generalisation, let us consider a
system of nonlinear, first order equations, for example describing an ideal barothropic gas,

ρt + (ρu)x = 0, ut + uux + p(ρ)ρx = 0,

where p = p(ρ)/ρ is the equation of state. This system can be written in differential form
as

dρ ∧ dx+ ρdt ∧ du+ udt ∧ dρ = 0 du ∧ dx+ udt ∧ du+ p(ρ)dt ∧ dρ = 0.

If we now exchange the dependent and independent variables, namely take t = t(u, ρ) and
x = x(u, ρ), and differentiate we arrive at

(−xu − ρtρ + utu) du ∧ dρ = 0 (xρ − utρ + p(ρ)tu) du ∧ dρ = 0, (1.2)

namely a linear system with variable coefficients, for which we can find a general solution.
The exchange of dependent and independent variables is often called a point transforma-
tion, a change that also involves first derivatives is called a contact transformation; for
example the Burgers equation ut + uux − uxx = 0 is linearisable by making the change
v = ux/u. Systems that can be linearised by a point or a contact change of variables
are called C-integrable in contrast to S-integrable systems which can be transformed to
action-angle variables through an inverse scattering transform.

There are two main questions addressed in this work. First, can we classify all hydro-
dynamic type systems that are integrable, at least for some large families. Second, having
an dispersionless system that is integrable, can we reconstruct (possibly all) dispersive
systems which have it as a limit. For example, if we take the famous Korteweg-de Vries
equation,

ut − uux − ε2uxxx = 0,

where ε can be seen as a small parameter controlling dispersion, it is quite easy to take
the limit ε → 0 and obtain the Hopf equation (1.1). So the question is, can this be
inverted and can we recover integrable dispersive equations from their hydrodynamic type
(dispersionless) limits.

In (1+1) dimensions, that is, for systems

ut + A(u)ux = 0, (1.3)

where u is an m-dimensional vector and A an m ×m matrix The classification question
was answered by Sergey Tsarev [64], by introducing the semi-Hamiltonian property as
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a criterion for integrability. The question about dispersive deformations was studied at
length by Boris Dubrovin [15, 16, 17, 18], together with the behaviour of solutions, leading
to the universality conjecture as well as far reaching results such as Frobenius manifolds.

In (2+1) dimensions, namely systems of the type

ut + A(u)ux + B(u)uy = 0, (1.4)

and to some extend higher dimensions Jenya Ferapontov introduced the hydrodynamic re-
ductions and their dispersive deformations [23].

My contribution to the field starts with the classification of all two-component inte-
grable Hamiltonian systems of hydrodynamic type in 2 + 1 dimensions (1.4) [30] and their
dispersive deformations [29].

For two component systems in 2+1 dimensions, Poisson brackets fall into three classes.
For each of these classes we obtain a full list of integrable Hamiltonian densities.

The central result of this research is that the moduli spaces of integrable Hamiltonians
in (2+1) dimensions are finite dimensional, with one ‘generic’ Hamiltonian for each class of
Poisson brackets, as well as a number of ‘degenerate’ potentials, including some polynomial
densities. For some of the more complicated cases the solution was found only in parametric
form, with parameters being solutions of generalised hyper-geometric equations [30].

We show that for Hamiltonian systems of hydrodynamic type non-trivial dispersive
deformations exist only for certain cases, but not in general. This is in contrast with
the situation in (1 + 1) dimensions where the moduli space of integrable Hamiltonians is
parametrised by a number of functions and every such system is deformable [29].

In [55] we demonstrate that for high-dimensional systems, for example (3+1) or (4+1)
systems, the method of hydrodynamic reductions can be augmented to include higher
than (1 + 1) dimensional reductions, effectively extending the class of systems that can be
studied. Our study is motivated by examining the hydrodynamic limit of Bogoyavlenskii’s
equations.

In [56] we present a schema to understand the WDVV associativity equations in the
case N = 3 as high-frequency limit of a three component “intermediate” dispersive system.
This “intermediate” system is of Camassa-Holm type and shares its dispersionless limit
with the Yadjima-Oikawa system, and thus they are in the same universality class.

Chapter Two is devoted to a more detailed review of the topic, as well as a systematic
description of my results. The chapter also includes a section of bidifferential calculus.

The relationship between dispersive equations and their hydrodynamic type limit can-
not be fully understood without looking at solutions and what happens to them at, and
close to this limit. The leading concept in this is Dubrovin’s universality conjecture, which,
briefly, claims that all solutions of Hamiltonian equations that have the same dispersionless
limit behave in exactly the same way up to and around the critical point of the solution
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of the dispersionless equation. The conjecture has been proven for a number of scenarios
in (1+1) dimensions. This regime is known as small dispersion limit, where one can intro-
duce a small parameter ε. What is implicit in the definition is that making the dispersion
small we let the non-linearity be much larger, thus we are actually looking at the strong
non-linear coupling regime where we can find different kinds of critical phenomena. This
includes dispersive shock waves, which are zones of rapid oscillations near the critical point,
soliton resolution, where some general initial data are resolved into solitons and radiation
and the formation of singularities from smooth initial data. As solutions cannot be found
explicitly, numerical simulation can play a major role in understanding critical phenomena
and producing conjectures that can guide analytical work. This is especially true in higher
dimensions where analytical results are scarce.

In the second part of the thesis I describe numerical work, using spectral collocation
methods to address various problems in mathematical physics, in the theory of PDEs and
special functions, in mathematical applications to physics and medical imaging and so
on. Although these fields may seem somewhat scattered they are connected with much
more than the common computational methods we use. The central idea is that spectral
collocation methods, that is approximating functions via sets of global functions, have
overwhelmingly more advantages than disadvantages compared to other methods. Basic
examples for spectral discretisation are approximating periodic functions via truncated
Fourier series and approximating finitely supported functions by Chebyshev polynomials.
The principal advantage is the so called spectral : for functions that are analytic on the
computational domain, the numerical error decreases exponentially with the number of
collocation points. Double machine precision of 15 orders of magnitude, which most of
today’s computers use as a standard can be achieved with between tens to thousands of
points.

Spectral method are not universally popular for three main reasons: First, they are
excellent at approximating regular functions, ideally analytic. The performance sharply
degrades once the functions are less regular. In a typical example a spectral Fourier based
method is only of order n for Cn functions. The second disadvantage which derives from the
first, is that spectral methods well work only on relatively simple computational domains,
where boundaries are coordinate surfaces. Third, they are computationally intensive. As
we shall see, differentiation matrices are global in the computational domain and require
dense matrix operations. One further consequence of this is that an error in one grid point
spreads on the entire computational domain.

We can compare this to the standard finite difference/ finite element/ finite volume
methods (FDM, FEM, FVM respectively). There the computational domain is divided into
a number of sub-domains (elements) where derivatives are computed via next-neighbour
difference (FDM), approximation with low order polynomials (FEM), or locally defined
smooth functions (FVM). This provides great flexibility, as complicated shapes can be
discretised via triangulation without too much trouble. The drawback is the relatively low
precision: spatial discretisation is usually up to second order which means machine precision
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may be difficult to obtain as it may require a billion points in each spatial direction. Such
precision, however, is never needed in engineering applications and as a result the FEM
and FVM are the bread and butter of all engineering modelling and computation, from
structural design to computational fluid dynamics. The same to a certain extent is true
for spatial discretisation schemes in computational physics, medical imaging and so on.

In mathematical and physical setting the unmatched precision of spectral methods can
be exploited with careful analytical consideration of the problem, the use of multi-domain
approaches and compactification of external domain. Emerging high-performance mass-
parallel computing techniques allow to scale and accelerate the codes. This combination
provides insights and guidance in areas that are unattainable with analytical methods or
less sophisticated computing. Examples include critical phenomena in multi-dimensional
PDEs, special functions, inverse problems and so on.

In a series of articles we numerically explore the Davey-Stewartson (DS) equation.
In [42] we treat DS as an evolutionary PDE and study its blow-up mechanism for smooth
initial data, conjecturing the type of blow-up and rates of different norms. In [33] we develop
a high-precision hybrid method for DS using explicit analytic regularisation combined with
a Fourier-based spatial resolution.

In [34, 43] and [40, 41] we look at DS from the standpoint of integrable systems, ad-
dressing the direct and inverse scattering problems. They are both described by a system of
d-bar equations, which is the central object of study. In [34] we look at Schwartz class po-
tentials, analytically regularising the singular terms and then applying a Fourier discretisa-
tion. In [43] we study compactly supported functions via a multi-domain Chebyshev-based
discretisation. This is further developed in [40] where we present results on the asymptotic
behaviour for large values of the spectral parameter k of the d-bar system and complement
it with a computational approach for low and intermediate values of the same parameter,
thus developing a comprehensive approach.

In [36] and [37] we look at critical phenomena in the Zakharov-Kuznetsov (ZK) family
of equations. This equation is not integrable, however it has some familiar properties: it
has several conserved quantities, has soliton solutions, and so on. We study soliton stability
and resolution, development of singularities from smooth initial date and the formation of
dispersive shock waves.

In the articles [8] and [44] and [46] we propose methods for computing the hyperg-
erometric function and some Painlevé transcendents and the Hilbert transformations to
machine precision on selected subsets of the complex plane using global spectral methods,
achieving a significant improvement in terms of speed, efficiency and accuracy over exist-
ing approaches. We would like to make two remarks here. First in the theory of special
functions, a function is usually regarded as known when it is connected to a certain ODE
and its automorphic properties and relations to other special functions are known. This,
however does not mean that its values are actually known: for this we need a computa-
tional method. For most functions standard software packages can reliably provide values
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to about eight orders of magnitude, which is sufficient for most applications, but still away
from machine precision. This leads us to the second remark: we intend to use these works
and results in further research in PDEs, where controlling the precision when studying
critical phenomena is crucial.

A direct application of these numerical techniques in physics is an ongoing joint project
between the Physics and Mathematics Institutes at the University of Burgundy where we
study the optical properties of a spheroidal quantum dot coupled to a metallic nanoparticle.
As the standard photon Green’s function expansions does not work well for this geometry,
we implement a direct PDE solver based on spectral methods over finite domains.

Some of my other works, that will not be discussed in detail in the present text include
bidifferential calculus, economic modelling for engineering applications, and exact solutions
in the AdS/CFT correspondence.



Chapter 2

Systems of hydrodynamic type

In this chapter we present some notions of the theory of hydrodynamic type equations
and their integrability. We begin with (1 + 1) dimensional systems and describe notions
of Hamiltonian structure for infinite dimensional systems. WE continue with higher di-
mensional theory, which has only been develop recently and where examples are fewer.
Finally, we present the construction of dispersive deformations, namely how to reconstruct
dispersive integrable systems from their dispersionless limits.

2.1 Hydrodynamic type systems

We start with basic notions on systems of hydrodynamic type, namely

uit =

n∑
j=1

vij(u)ujx, (2.1)

are called quasi-linear systems in 1+1 dimensions, or systems of hydrodynamic type. Here
u = (u1(t, x), u2(t, x), . . . , un(t, x)) is a n-component vector of dependent variables. The
functions vij(u), which could also be considered as matrix elements of an n × n matrix
V, are assumed sufficiently smooth and, in general, non-constant. Systems of this type
arise in many backgrounds including differential geometry, general relativity, magneto-fluid
dynamics, etc. The system (2.1) is called strictly hyperbolic iff all eigenvalues of V are real
and distinct.

If there exists a local change of variables ui = ui(R1, R2, . . . , Rn), such that the matrix
V is diagonal in the new coordinates Ri then system (2.1) is diagonalisable. The Ri

coordinates are called Riemann invariants, and in this new set of variables the system has
the form

Rit = vi(R)Rix. (2.2)

There exists an invariant differential-geometric criterion for diagonalisability due to
Haantjes [32]. One constructs the Nijenhuis tensor from a strictly hyperbolic matrix V =

7
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vij ,

N i
jk :=

n∑
p=1

n∑
q=1

vsj∂sv
i
k − vsk∂svij − vis(∂jvsk − ∂kvsj ),

and then uses it to find the Haantjes tensor,

H i
jk :=

n∑
p=1

n∑
q=1

(N i
qpv

q
k −N

q
kpv

i
q)v

p
j − v

i
p(N

p
qjv

q
k −N

q
kpv

i
q).

The following theorem then holds

Theorem 1. [32] A strictly hyperbolic matrix vij is diagonalisable if and only if the corre-

sponding Haantjes tensor H i
jk is identically zero.

Hamiltonian structure can be defined via a Poisson bracket of the following form:

{I, J} =

∫
δI

δui(x)
Aij

δJ

δuj(x)
dx. (2.3)

Here Aij is a Hamiltonian differential operator

Aij = gij(u(x, t))
d

dx
+ bijk (u(x, t))ukx.

The following important theorem, due to Dubrovin and Novikov then holds:

Theorem 2. [12]

1. Under local changes of coordinates, gij transforms like a (2,0) - tensor. Furthermore,
if det gij 6= 0 then bijk transforms like the expression −gisΓisk, where Γisk is an affine
connection.

2. The skew-symmetry of (2.3) imposes that gij must be symmetric and thus it can be
considered as a pseudo-Riemanian metric on the space of field variables u. Moreover,
the connection Γisk must be compatible with this metric, ∇kgij = 0.

3. In order that the bracket (2.3) satisfies the Jacoby identity,

{{I, J},K}+ {{J,K}, I}+ {{K, I}, J} = 0,

it is necessary and sufficient that the connection Γisk is torsionless and flat i.e. Γisk =
Γiks and the Riemann curvature tensor Rijkl = 0.
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A Hamiltonian of hydrodynamic type is a functional H =
∫
h(u)dx such that its den-

sity h(u) depends only on the field variables u(x, t), but is independent of their spatial
derivatives ux, uxx, . . . . A Hamiltonian system of hydrodynamic type uit = {ui, H} then
explicitly is

uit =

(
gik

∂2h

∂uk∂uj
+ bikj

∂h

∂uk

)
ujx.

Strictly hyperbolic, diagonal Hamiltonian systems are integrable by the following geo-
metric construction: Let

uit = vi(u)uix.

Then,
0 = ∇ivki −∇jvki = ∂ivjδ

j
k − ∂jviδ

i
k + Γkij(vj − vi).

This means that Γkij = 0 for i 6= j 6= k and

∂ivk = Γkki(vi − vk), i 6= k. (2.4)

On the other hand, for diagonal matrices vij = viδ
j
i the condition

∑
k gikv

k
j =

∑
k gjkv

k
i

directly implies that the associated metric gik is diagonal since,

n∑
k=1

gikv
k
j − gjkvki = gij(vj − vi) = 0,

and vi 6= vj for i 6= j due to hyperbolicity. From Γkij =
∑

s
1
2g
ks(∂jgsi + ∂igsj − ∂sgij) we

find

Γkki =
1

2
∂i ln gkk. (2.5)

From the last equation it directly follows that the consistency condition ∂j∂i ln gkk −
∂i∂j ln gkk = ∂jΓ

k
ki − ∂iΓkkj = 0 is equivalent to

∂j

(
∂ivk
vi − vk

)
= ∂i

(
∂jvk
vj − vk

)
, i 6= j 6= k. (2.6)

The solutions of systems of type (2.4) are discussed in classical differential geometry
[9]: The existence of a flat diagonal metric is equivalent to the existence of an orthogonal
curvilinear coordinate system in (pseudo-) Euclidean space. If we are given an orthogonal
curvilinear system of coordinates it is natural to ask how to find the relevant Hamiltonian
matrices vi. Evidently, from the arguments in this section, the sole requirement for a
diagonal matrix to be Hamiltonian and respectively possess an associated flat metric is
(2.4).

On the other hand, we can think of (2.4) as a linear system of equations for vi(u),
which is compatible if and only if

∂iΓ
k
kj − ΓkkjΓ

j
jj − ΓkkiΓ

i
ij + ΓkkiΓ

k
kj = Rkjik = 0, (2.7)
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from which follows
∂jΓ

k
ki − ∂iΓkkj = Rkkij = 0,

where Rkkji are components of the Riemann curvature tensor. These conditions are trivially
satisfied for a flat metric gij .

System (2.4) is an n-component first order system, thus the general solution depends on
n functions of a single variable. This implies that for each orthogonal curvilinear coordinate
system there exists a family of Hamiltonian matrices, locally parametrised by n functions
of a single variable.

The following theorem [64] summarises the results discussed in this section.

Theorem 3. The metric g, associated with the Hamiltonian matrix V, vij(u) = vjδ
i
j, is

diagonal and the variables u constitute a curvilinear orthogonal system of coordinates. On
the other hand for each curvilinear orthogonal system of coordinates there exists a family
of Hamiltonian matrices, which are diagonal in this system of coordinates. This family is
locally parametrized by n functions of a single variable. For all matrices V with different
diagonal coefficients vi belonging to this family the following relations hold:

∂ivk = Γkki(vi − vk), ∂j

(
∂ivk
vi − vk

)
= ∂i

(
∂jvk
vj − vk

)
.

The Hamiltonian property of a hydrodynamic type system is sufficient for integrability,
but can be weakened. The conditions (2.7) follow directly from (2.6), thus, given a hyper-
bolic diagonal system uit = vi(u)uix with distinct characteristic speeds vi, that satisfy (2.6)
then the system of equations for wi,

∂iwk = Γkki(wi − wk), Γkki =
∂kvi
vk − vj

,

is compatible. A diagonal hydrodynamic system uit = viu
i
x is called semi-Hamiltonian if it

is hyperbolic and its coefficients satisfy the condition

∂j

(
∂ivk
vi − vk

)
= ∂i

(
∂jvk
vj − vk

)
.

The semi-Hamiltonian condition is necessary and sufficient for integrability.

Theorem 4. [64] A semi-Hamiltonian system has infinitely many commuting flows, parametrised
locally by n functions of a single variable. These flows commute with each other, their ma-
trices are all diagonal and all hydrodynamic type integrals of the initial semi-Hamiltonian
system are also their integrals.

The general solution of an n-dimensional semi-Hamiltonian diagonal system uit = viu
i
x

can be solved by virtue of the generalised hodograph method [64], which is a multi-
component generalisation of the method of characteristics. As we have already discussed,
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a system of the considered type has infinitely many commuting flows uiτ = wiu
i
x, which

satisfy the equations
∂iwk

wi − wk
=

∂ivk
vi − vk

, i 6= k.

Let us now construct a system of n equations for the field variables u,

wi(u) = vi(u)t+ x. (2.8)

Here x and t are parameters, vi are the coefficients of the original semi-Hamiltonian matrix,
and wi are the coefficients of any flow commuting with the original system. The following
theorem then holds:

Theorem 5. [64] Any smooth solution of (2.8) is a solution of the semi-Hamiltonian sys-
tem uit = viu

i
x. Furthermore, any solution of the given system uit = viu

i
x may be represented

as a solution of (2.8) in a neighbourhood of a point (t0, x0) such that uix(t0, x0) 6= 0.

2.2 Multi-dimensional extensions

The method of hydrodynamic reductions [23] provides a way to investigate the integrability
of higher dimensional systems of hydrodynamic type. Consider a 2 + 1 dimensional system
of hydrodynamic type in the following form:

ut = A(u)ux + B(u)uy. (2.9)

Here u is an m-component vector, A(u) and B(u) are n × n matrices, with l being the
number of equations. We consider the following ansatz

u(x, y, t) = u(R1, R2, . . . , RN ),

with Ri(x, y, t) required to satisfy the equations,

Rit = λi(R)Rix, Rix = µi(R)Rix. (2.10)

We can think of this as a decoupling of the original 2 + 1 dimensional system (2.9) into
two separate commuting 1 + 1 dimensional systems of hydrodynamic type from where the
name hydrodynamic reductions comes from. Substituting the ansatz into (2.9) we arrive
at the following equation

(λiI −A− µiB)∂iu = 0, (2.11)

which implies that λi and µi must satisfy the dispersion relation det(λI −A− µB) = 0
We can now compute the commutativity condition Rty = Ryt to find that

∂jλ
i

λj − λi
=

∂jµ
i

µj − µi
i 6= j. (2.12)



12 CHAPTER 2. SYSTEMS OF HYDRODYNAMIC TYPE

Provided (2.12) holds, the solution of the system (2.9) is given by the generalised hodograph
formula

vi(R) = x+ λi(R)t+ µi(R)y, (2.13)

where vi is the general solution of the linear system

∂jv
i

vj − vi
=

∂jλ
i

λj − λi
=

∂jµ
i

µj − µi
, i 6= j. (2.14)

The system (2.9) is integrable if it possesses sufficiently many N -component reductions,
parametrized by N functions of a single variable.

We note here that this definition agrees with any other definition of integrability for this
kind of systems e.g. it posseses infinitely many higher commuting flows, it can be expressed
as a compatilbility condition of a “dispersionless” Lax Pairs and so on [23, 26, 28].

2.3 Dispersive systems as integrable deformations

The deformation theory of 1 + 1 dimensional Hamiltonian systems is based on the theory
of integrability of hydrodynamic type Hamiltonian systems in 1 + 1 dimensions, presented
in Chapter 2. We recall that a Hamiltonian system of hydrodynamic type

uit = {ui, H0} = P ij δH0/δu
j , (2.15)

i, j = 1, . . . , n, where P ij = εiδijd/dx is the Hamiltonian operator and H0 =
∫
h(u) dx

is the Hamiltonian with the density h(u), is integrable if and only if it is diagonalis-
able. Integrability in this case is understood as the existence of infinitely many functionals
F =

∫
f(u) dx, commuting with the Hamiltonian, {H,F} = 0. The functionals F are

parametrized by n arbitrary functions of one variable.

There are several approaches in studying deformations of integrable dispersionless equa-
tions. These include deformations of Lie algebra homomorphisms [21] and dressing operator
method applied to Moyal algebra valued loop group [62]. We will follow the route taken
by Boris Dubrovin and his collaborators in a series of papers [16, 17, 18, 19, 20]. Given an
integrable Hamiltonian system of hydrodynamic type one considers a deformation of the
original Hamiltonian in the form

H = H0 + εH1 + ε2H2 + . . . (2.16)

where the density of Hi is assumed to be a homogeneous differential polynomial of de-
gree i in the x-derivatives of u with coefficients being functions of ui themselves. Here
the Hamiltonian operator P ij can be assumed undeformed due to the general results
of [31]. Deformation (2.16) is called integrable (to the order εm) if any hydrodynamic
Hamiltonian F0 =

∫
f(u) dx commuting with H0 can be deformed in such a way that
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{H,F} = 0 (mod εm+1). The classification of integrable deformations is performed mod-
ulo canonical transformations of the form

H → H + ε{K,H}+
ε2

2
{K, {K,H}}+ . . . (2.17)

where K is any functional of the form (2.16). The richness of this deformation scheme
is due to the following facts: First, the variety of integrable ‘seed’ Hamiltonians H0 is
parametrised by n(n − 1)/2 arbitrary functions of two variables. Second, for a fixed inte-
grable Hamiltonian H0, the deformation procedure introduces extra arbitrary functions of
one variable known, in bi-Hamiltonian context, as ‘central invariants’. One should point
out that it is still an open problem to extend a deformation, for arbitrary values of these
functions, to all orders in the deformation parameter ε.

An analogous deformation scheme in 2 + 1 dimensions, was developed in the context
of hydrodynamic reductions. We will say that a deformed system is integrable (integrable
to order εm) iff all its hydrodynamic reductions inherited from the original system could
be deformed without a breach of the commutativity conditions. We note here that the
Hamiltonian operator will be left undeformed. We will later present an example in (1+1)
dimensions where the deformation can be moved between the Hamiltonian operator and
the potential, however we are not aware of any results establishing the triviality of Poisson
cohomology in higher dimensions.

2.4 Results

2.4.1 Classification of integrable hamiltonian systems and their disper-
sive deformations

In the 1+1 dimensional case, for fixed signature there exists only one non-degenerate
Poisson bracket. In contrast, in the two component 2+1 dimensional case there are three
essentially different types of Poisson brackets, namely

PI =

(
d/dx 0

0 d/dy

)
, PII =

(
0 d/dx

d/dx d/dy

)
,

whereas the third one is essentially non constant:

PIII =

(
2v w
w 0

)
d

dx
+

(
0 v
v 2w

)
d

dy
+

(
vx vy
wx wy

)
.

We show that the moduli spaces of integrable Hamiltonians in (2 + 1) dimensions are finite
dimensional, with one ‘generic’ Hamiltonian for each class of Poisson brackets, as well as
a number of ‘degenerate’ potentials, including some polynomial densities. For some of the
more complicated cases the solution was found only in parametric form, with parameters



14 CHAPTER 2. SYSTEMS OF HYDRODYNAMIC TYPE

being solutions of generalised hyper-geometric equations [30]. Further, when considering
deformations, we show that for Hamiltonian systems of hydrodynamic type non-trivial
dispersive deformations exist only for certain cases, but not in general. This is in contrast
to the situation in (1 + 1) dimensions where the moduli space of integrable Hamiltonians
is parametrised by a number of functions and every such system is deformable [29].

2.4.2 Exceptional cases: WDVV

There exist several examples of hydrodynamic type systems that are not diagonalisable, but
are nevertheless integrable [27, 22]. Most of them are connected to the three-wave equation
and are integrable by inverse scattering transform, what is sometimes called S-integrable.
In contrast standard (i.e. diagonalisable) hydrodynamic type systems are C-integrable by
some complicated contact change of coordinates and use of implicit functions. Among
these systems is one of the Witten-Djikgraaf-Verlinde-Verlinde (WDVV) equation

fttt = f2
xxt − fxxxfxtt.

Introducing w1 = fxxx, w2 = fxxt and w3 = fxtt we can write it in quasilinear form

w1t = w2
x, w2

t = w3
x, w3

t = [(w2)2 − w1w3]x. (2.18)

This equation appears in Topological Field Theory; in the context of classical differential
geometry this equation describes the Egorov orthogonal curvilinear coordinate nets, see
[15] and references therein. This linearly degenerate hydrodynamic type system is non-
diagonalisable, thus it is not semi-Hamiltonian, but is nevertheless integrable by the inverse
scattering transform. This means that system (2.18) is not a dispersionless limit of some
integrable dispersive system. In [55] we construct the dispersive system

(1 + ε∂x)at = (a2 + 2b+ εaax + εbx)x,

bt = (−2c− εbax + εcx)x,

(1− ε∂x)ct = (2ac− εbbx − εacx)x.

(2.19)

The dispersionless limit ε→ 0 of (2.19) produces the semi-Hamiltonian system

at = (a2 + 2b)x, bt = −2cx, ct = 2(ac)x;

whereas the high frequency limit ε→∞ gives

at = bx, bt = (cx − bax)x, ct =
1

2
(b2)x.

This system is equivalent to WDVV by a = fxx, b = fxt and c is such that cx = ftt+fxtfxxx
and ct = fxtfxxt. Both limit systems are bi-Hamiltonian, each equipped with a pair
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of local Hamiltonian structures. The intermediate system (2.19) is also bi-Hamiltonian
and possesses a pair of quasi -local Hamiltonian structures. In the standard scheme we
thus have the following picture: System (2.4.2) is an integrable system of hydrodynamic
type, the intermediate system (2.19) is one of its dispersive deformations (another one is
the Yadjima-Oikawa system), WDVV equations then appear as another limit, ε → ∞.
Furthermore, (2.19) is a system of Camassa-Holm type [4]. The Camassa-Holm equation
is a non-evolutionary equation and the first example in the theory of integrable systems,
which possesses infinitely many peakon solutions. Non-evolutionary systems can possess
local Hamiltonian structures, but corresponding Hamiltonian densities are non-local or
vice versa: if their Hamiltonian densities are local, corresponding Hamiltonian operators
are non-local.

2.4.3 Exceptional cases: Bogojavlenskii’s equations

Bogoyavlenskii’s Breaking Soliton equations arise as a simple two-dimensional generalisa-
tion of well-known equations, by allowing the Lax pair to depend on an additional inde-
pendent variable. The analogue of KdV, often called the Breaking Soliton equation (see
[3]), written in its nonlocal form is

vt −
1

2
vy∂
−1
y vx − vvx +

ε2

2
vxyy = 0. (2.20)

This equation is integrable, possesses a Lax pair and infinitely many commuting flows.
What is remarkable is that its dispersionless limit

vt + vvx + uvy = 0, uy =
1

2
vx, (2.21)

cannot be treated with the standard integrability test for multidimensional quasilinear
systems, based on the method of hydrodynamic reductions, since the dispersion relation
is degenerate — it reduces to two lines rather than being a conic [23]. Furthermore, the
(2+1)-dimensional non-linear Schrödinger equation, which also appears in [3] as a breaking
soliton generalisation of NLS

iε ψt + ε2ψxy ± 2ψ∂−1
y (|ψ|2)x = 0, (2.22)

after an appropriate transformation (the so called Madelung transformation, see Section
5), gives rise in a dispersionless limit to

R1
t +R1R1

x + uR1
y = 0, R2

t +R2R2
x + uR2

y = 0, uy =
1

2
(R1 +R2)x. (2.23)

Since both non-local systems (2.20) and (2.22) are integrable, their dispersionless limits
(2.21) and (2.23) are also integrable (because they preserve infinitely many conservation
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laws and higher commuting flows). So the question of how to understand their integra-
bility, and more generally the integrability of the generalisation to M components (κi are
constants)

Rit +RiRix + uRiy = 0, uy =
M∑
i=1

κiR
i
x, i = 1, . . . ,M,

arises naturally1.
In [55] we consider an ‘enveloping’ four-dimensional integrable quasilinear system. We

extract M component three-dimensional hydrodynamic reductions, that cannot be further
reduced, i.e. they would fail the hydrodynamic reductions [23] integrability test. However
they preserve infinitely many conservation laws and commuting flows and are thus inte-
grable. One of these reductions is the dispersionless limit of the breaking solution equation
and contains higher commuting flows as well. More generally this means that the method
of hydrodynamic reductions can be augmented by allowing high dimensional reductions (in
this case (2+1)).

Moreover, our approach is universal, meaning that any D-dimensional quasilinear sys-
tem from any hyper-Kähler hierarchy possesses (D− 1)-dimensional hydrodynamic reduc-
tions.

Any multi-dimensional linearly degenerate equation of second order, which necessarily
belongs to the hyper-Kähler hierarchy possesses infinitely many global solutions (see, for
instance, [25]). However, the Breaking Soliton equations have no global solutions, thus the
extraction of corresponding solutions from multi-dimensional linearly degenerate equations
of second order remains an open problem.

1The first system (2.21) is linearisable by a point transformation of the dependent and independent
variable x = x(v, t). Such an approach, however, does not generalise to the multicomponent case.



Chapter 3

Mathematical physics via scientific
computing

In this chapter we take a different viewpoint to study dispersive PDEs and phenomena re-
lated to them: we look at their solutions and we do this using numerical simulations. Many
dispersive systems have known exact solutions. Integrable systems have entire infinite fam-
ilies of such exact solutions. However, as there are nonlinear systems, there is rarely a way
to obtian all solutions in and exact form. Actually, some of the most interesting solutions,
for example those related to shock waves are available only through numerical simulation.

We start our discussion with the presentation of the main tool used in this research:
spectral collocation methods. We then present results relating to two families of multi-
dimensional equations: Davey-Stewartson and Zakharov-Kuznesov type equations, where
we discuss various phenomena, propose a number of conjectures and discuss limitations of
the methods. At the end we very briefly describe other works related to special functions
and transformations, that use the same method and are part f a toolbox for future research.

3.1 Spectral Differentiation

Here we very briefly present the numerical methods we use, that are based on spectral
differentiation. The reader is invited to look at [63], which is a hands-on introduction to
the subject. The aim of this techniques is to be able to differentiate in space with a high,
and more importantly, controllable precision. A one-dimensional function f(x) defined
over some interval for x, is discretised into the set f(xi) for a grid xi for i = 1, . . . N .
The inverse problem, how to recover a function g(x) from the set (gi(xi)) cannot be solved
exactly, but only up to a certain precision, that is we can construct an interpolant g such
that g(xi) = gi and |g(x)−g(x)| ≤ εi for all x. We can then say we know the function g(x)
up to a said precision εi. Most modern computers store real numbers in double-precision

17
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floating point format. Algebraic operations in finite floating point format are not exact
but precise to machine precision, also called machine epsilon εm. For double float the
machine precision 2−52 ≈ 2.2210−16 i.e. we can track quantities that are up to 15 orders of
magnitude different, which is sufficient for almost any application. An excellent practical
interpolation method is such that the numerical precision is smaller than the machine
epsilon ε ≤ εm. What a “good” interpolation method is depends on the application e.g. in
industrial machining six orders of magnitude are sufficient, in medical imaging even two
may be enough. Spatial discretisation allows us to preform numerical algebraic operations
as well as numerical differentiation and integration. As we are mostly concerned with PDEs
we will concentrate on differentiation. Differentiation is a linear operation, thus it can be
represented by the action of a differentiation matrix D, such that

f ′i = Dj
i fj .

Each differentiation also has a finite precision namely the difference |f ′(xi)− f ′i | ≤ εd. The
quantity εd is often called numerical precision (rather than e.g. differentiation precision),
as it is most difficult to control and usually largest.

Depending on the functions and domains over which these functions are defined differ-
ent spatial discretisation methods work best. In our work we mostly use two — Fourier
discretisation to treat periodic functions as well as Schwartz functions (which, up to a
finite precision, can be treated as periodic over a sufficiently large interval [−L,L]) and
Chebyshev polynomials to treat functions on finite intervals or with algebraic decay.

Fourier discretisation is in a sense standard, and we will only briefly stop on it. We
approximate a function with a Fourier series

f(x) =
1

2π

∞∑
k=−∞

aie
ikx.

The Fourier transform of a smooth, rapidly decreasing functions is rapidly decreasing, see
the discussion in [63]. The same is true for periodic functions. Thus for analytic periodic
functions for every ε there is N such that a±(N+i) ≤ ε. Thus we can truncate the infinite
series and use a finite grid in both the x and k variables

fi(xi) =
1

2π

N∑
k=−N+1

ake
ikxi .

The coefficient aj can be obtained via the Fast Fourier Transformation (FFT), which we
denote by F , and the values fi can be obtained from the coefficients ai by its inverse,
F−1. In the space of coefficients the Fourier differentiation matrix D is diagonal following
from the formula ∂xf(x) = F−1ikF(f). One can construct Fourier differentiation matrices
that work directly in the function space, however full matrix multiplication is of order
O(N2) operation, whereas FFT, thanks to the Cooley-Tukey algorithm is an O(N log(N))
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operation, thus for sufficiently large N it is much faster to do Fourier transforms back and
forth.

For finite domains we approximate functions with a sum of Chebyshev polynomials
Tm(l) := cos(m arccosx), l ∈ [−1, 1], i.e.,

f(l) ≈
∑N

m=0 amTm(l). (3.1)

The constants am are determined via a collocation method: on the points

lj = cos

(
jπ

Nr

)
, j = 0, . . . , N

the equations (3.1) are imposed as equalities, i.e., for fixed n we have

a(lj) =
N∑
m=0

amTm(lj), j = 0, . . . , N

which uniquely determines the an. Because of the definition of the Chebychev polynomials,
one has Tm(lj) = cos(mjπ/Nr). Thus the coefficients an can be obtained via a Fast Cosine
Transformation (FCT) which is related to the FFT, see e.g., the discussion in [63] and
references therein.

To approximate derivatives via the ansatz (3.1), one uses T ′0(l) = 0, T ′1(l) = 1 and for
n ≥ 1 the identity

T ′n+1(l)

n+ 1
−
T ′n−1(l)

n− 1
= 2Tn(l)

which implies that the derivative of the an(l) is approximated via the action of a differen-
tiation matrix D on the Chebychev coefficients anm

a′n(l) ≈
Nr∑

m,α=0

DmαanαTm(l)

The differentiation matrix is upper triangular and for even Nr of the form

D =



0 1 0 3 0 5 . . . Nr − 1 0
4 0 8 . . . 2Nr

6 0 10 . . . 2(Nr−1) 0
8 0 12 . . . 2Nr

. . . 0
...
0

2Nr


.
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In a similar way one can divide in the space of Chebychev coefficients by l which is
normally numerically a very delicate operation if l can vanish on the considered interval as
it does here. Using the identity

Tn+1(l) + Tn−1(l) = 2lTn(x), n = 1, 2, . . . , (3.2)

we can divide in coefficient space by l± 1. For given Chebyshev coefficients anm we define
the coefficients ãnm via

∑∞
n=0 anmTm(l) =:

∑∞
n=0(l ± 1)ãnmTm(l). This implies the action

of a matrix R in coefficient space (if an(r)/r is bounded for r → 0),

an(l)

l
≈

Nr∑
m,α=0

RmαanαTm(l). (3.3)

The matrix R−1 has for even Nr the form

R−1 =



1 1/2
1 1 1/2

1/2
. . .

. . .
. . .

1/2
1/2 1


;

(the matrix R is computed by inverting this matrix).

Spectral methods pose unique computational challenges. As the driving transforma-
tions FFT and FCT are global, this means that each operation uses the entire data array
that describes a function f . In higher dimensions achieving high precision may require
several thousand points in each spatial direction, which means that the arrays describing
a complex function in double precision are from several GB to several tens of GB in size.
Computations have to done locally on the data but it also has to be cross-communicated
between the nodes. This is an enormous challenge for traditional computer systems, which
even in the high-performance computing versions are clusters of computational nodes, that
is, they are designed to separate a task in many parts and then each node works on its part
independently. The emphasis is on computational power of each of the nodes in the cluster,
and not on their inter-connectivity. This is an excellent hardware solution for e.g. FEM,
FVM and other local methods, however global methods such as FFT cannot be efficiently
scaled this way. To solve this problem we use graphical processing unit computing, taking
advantage of the graphics processors to deploy mass-parallel computing and having very
high memory transfer capability within each graphics card and good connection to the
other cards. Commercial solutions have recently (2018) appeared under the name dense
computational systems having several high-performance graphic cards connected on very
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high speed connections, promising a new era in computing.

In the rest of the chapter we give brief descriptions of the Davey-Stewartson II equation,
and the Zakharov-Kuznetsov equation and our results in this direction. The same approach
has been used in a series of works on problems related to special functions and ODEs,
namely the hypergeometric function, the Painlevé transcendents and Hilbert transforms
and stability of Peregrine solutions to the NLS equation. All these propose methods for
efficient, fast and precise computing of these functions and transformations on various
domains or classes of functions. These results are intended as a toolbox for further research
in PDEs. The reader is kindly invited to find more details in the respective articles [8, 44,
45, 46].

3.2 Davey-Stewartson

The Davey-Stewartson (DS) II family of equations is

iΨt + Ψxx −Ψyy + 2ρ
(
βΦ + |Ψ|2

)
Ψ = 0,

Φxx + Φyy + 2 |Ψ|2xx = 0,
(3.4)

where β is a positive constant, indices denote partial derivatives, ρ takes values ±1, and
where Φ denotes a mean field. The systems (3.4) are of considerable importance in appli-
cations since they are a simplification of the Benney-Roskes [2], or Zakharov-Rubenchik
[67] systems being ‘universal’ models for the description of the interaction of short and
long waves. They first appeared in the context of water waves [10, 11, 1, 49] in the so-
called modulational (Schrödinger) regime, i.e., in the study of the modulation of plane
waves. In [6, 7] is was shown, via diffractive geometric optics, that DS systems provide
good approximate solutions to general quadratic hyperbolic systems. Furthermore, the DS
systems appear in numerous physical contexts as ferromagnetism [48], plasma physics [53],
and nonlinear optics [54]. The Davey-Stewartson systems can also be viewed as the two-
dimensional version of the Zakharov-Schulman systems (see [68, 69]. For more details on
DS and its applications the reader is referred to [39, 38] where an abundance of references
can be found.

The Davey-Stewartson II equation is completely integrable, possessing a Lax-pair

ψx + iσ3ψy =

(
0 q
q 0

)
ψ, (3.5)

ψt =

(
i∂
−1
∂
(
|q|2
)
/2 −i∂q

i∂q −i∂−1
∂
(
|q|2
)
/2

)
ψ −

(
0 q
q 0

)
ψy + iσ3ψyy . (3.6)

The equation (3.5) is referred to, by analogy with previous 1-dimensional cases, as the
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spectral problem associated to the DS-II equation. It can equivalently be written as(
∂ 0
0 ∂

)
ψ =

1

2

(
0 q
q 0

)
ψ . (3.7)

The direct problem is then to seek a vector-valued solution ψ = ψ(z, k) =

(
ψ1

ψ2

)
with the

following asymptotic behavior as |z| → ∞:

lim
|z|→∞

ψ1e
−kz = 1, (3.8)

lim
|z|→∞

ψ2e
−kz = 0 . (3.9)

The quantity ψ is referred to as a CGO solution. The reflection coefficient, r(k), is encoded
in the sub-leading term in the asymptotic expansion of ψ, via

ψ2e
−kz =

r(k)

z
+O

(
1

|z|2

)
. (3.10)

Now, if q = q(x, y, t, ε) evolves according to the DSII equation, then the reflection coeffi-
cient evolves according to

r = rε(k, t) = rε(k, 0)e
−it
4ε

(
k2+k

2
)
.

In this sense, the mapping from q to r linearises the DSII flow. More amazingly, the inverse
problem of reconstructing the potential q(x, y, t, ε) from the reflection coefficient r(k, t) is
also a D-bar problem, only in the complex variable k. Indeed, setting

Φ1 = Φε
1(k; z, t) := e−kz/εψ1 and Φ2 = Φε

2(k; z, t) := e−kz/εψ2 , (3.11)

it turns out that one has, for each z ∈ C,

ε∂kΦ1 = 1
2e

(kz−kz)/εrε(k, t)Φ2, ε∂kΦ2 = 1
2e
−(kz−kz)/εrε(k, t)Φ1 (3.12)

where,

∂k :=
1

2

(
∂

∂k1
+ i

∂

∂k2

)
, ∂k :=

1

2

(
∂

∂k1
− i

∂

∂k2

)
,

and the asymptotic conditions

lim
|k|→∞

Φε
1(k; z, t) = 1 and lim

|k|→∞
Φε

2(k; z, t) = 0. (3.13)

The functions Φ1 and Φ2, being uniquely determined by the above elliptic system (3.12)
and boundary conditions (3.13), yield the potential q(x, y, t, ε) through the asymptotic
behavior as |k| → ∞:

Φ2 =
q(x, y, t, ε)

2k
+O

(
|k|−2

)
.

DSII has soliton solutions called lumps, which have algebraic decay towards infinity.
DSI supports so called “dromions”, which have non-trivial behaviour at infinity.
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3.2.1 Results

The Davey-Stewartson equation can be thought of as a non-local NLS type equation. The
general theory of such equations [59] suggests that under certain conditions this type of
equations can experience blow-up, the production of a singularity from smooth initial data.
DS II is remarkable as there is even an explicit solution, due to Ozawa that becomes singular
at one point in space and time. The Ozawa solution has an exact blow-up by applying

a pseudo-conformal transformation ψ̃(x, y, t) = exp
(
i(x2−y2)

4t

)
ψ
(
x
t ,

y
t ,

1
t

)
on a standard

lump. Let ab < 1 and T = −a/b. Let u(x, y, t) is the function

u(x, y, t) = exp(i
b

4(a+ bt)
(x2 − y2))

v(X,Y )

a+ bt
,

where

v(X,Y ) =
2

1 +X2 + Y 2
, X =

x

a+ bt
, Y =

y

a+ bt
.

Then u is a solution to DS II with ||u(x, y, t)||2 = ||v(X,Y )||2 = 2
√
π. Furthermore,

|u(t)|2 → 2πδ in S ′ when t→ T

|∂xψ(t, )|22 ∝ (t∗ − t)−2, |ψ(t, )|∞ ∝ ψ(t∗ − t)−1.

This seems at odd with the classical theory result (see again [59] and also [51]), that via
dynamical rescaling

X = x/L(t), Y = y/L(t), τ =

∫ t

0

dt′

L2(t′)
Ψ(X,Y, τ) = L(t)ψ(x, y, t).

|ψ|2 = |Ψ|2
paved the way for studying blow-up in focusing NLS analytically :in cases with a generic
blow-up in one point, the blow-up of the quintic NLS solution is self-similar and follows

the ‘dynamical rescaling’ L(t) ∝
√

t ∗−t
ln | ln(t∗−t)| and thus

|∂xψ(t, )|22 ∝ (t∗ − t)−1, |ψ(t, )|∞ ∝ ψ(t∗ − t)−1/2.

In [42] we study various initial data and propose the following

Conjecture 6. Consider initial data ψ0 ∈ C∞(R2)∩L2(R2) for the focusing DS II equation

i∂tψ + �ψ + 2[(∆−1�)|ψ|2]ψ = 0

with a single global maximum of |ψ0| such that the solution to DS II has a blow-up in finite
time. Then the blow-up is self-similar with

X =
x

L(t)
, Y =

y

L(t)
, τ =

∫ t

0

dt′

L2(t′)
, Ψ(X,Y, τ) = L(t)ψ(x, y, t).
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with a scaling factor L(t) ∝ t∗ − t, and the blow-up profile given by the lump, i.e.,

ψ(x, y, t) =
P (X,Y )

L(t)
+ ψ̃, P (X,Y ) =

2

1 +X2 + Y 2
,

where ψ̃ is bounded for all t.

That is, the Ozawa-type blow up is generic and localised data of sufficient mass will
develop a singularity in finite time, and the asymptotic profile will be that of a scaled lump.
In [33] we develop a high precision method for Fourier discretisation of DSII by using an
analytic regularisation (within the machine epsilon) of the nonlocal term in Fourier space,
thus producing a much more robust computational tool.

In the series of articles [34, 43, 40, 41] we consider the scattering problem for DSII
given by d-bar equation and in particular its complex geometric optics (CGO) solutions
for Schwartz potentials as well as potentials with compact support. We propose methods
exhibiting spectral convergence to compute said CGO solutions as well as the reflection
coefficient. The presence of rapidly oscillating terms in (3.12) makes numerical computation
for high values of the spectral parameter k difficult, thus in the last two of the mentioned
articles we complement the numerical computation for low and intermediate values of k
with exact asymptotic formulas for large k, thus constructing a hybrid computational
method. The main computational result are the estimates

φ1
2 =

1

2k
ei|k|<(·ω)1Ω +O(1)h3/2(ln(1/h))1/2 in 〈·〉εL2,

and

φ1
1 =

h

4k
E(1Ω) +O(1)h3/2(ln(1/h))1/2 in 〈·〉εL2.

This allows us to estimate the reflection coefficient as well.

D-bar equations find various other applications, one of the most remarkable of which is
in solving what is called the Calderón problem, namely how to recover the conductivity γ
in a given domain Ω from measurements on the boundary ∂Ω (for a thorough review and
references see [65]). The conductivity equation in 2d is

∇ · (γ(x1, x2)∇u(x1, x2)) = 0, (x1, x2) ∈ Ω.

The voltage f on ∂Ω: Dirichlet condition u(x1, x2)|∂Ω = f(x1, x2), the current density g on
∂Ω is a Neumann condition γ(x1, x2)∂νu(x1, x2)|∂Ω = g(x1, x2). The problem is then how
to recover the conductivity in γ(x, y) for the entire domain from the Dirichlet-to-Neumann
mapping Λγ (the Neumann data function g from given Dirichlet data f). We hope to be
able to apply the proposed computational methods in this direction as well.
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3.3 Zakharov-Kuznetsov

Integrable structure provide aid, but our methods are not necessary restricted to them.
The generalized Zakharov-Kuznetsov (ZK) equation

ut + (∆u+ up)x = 0, p = 2, 3, 4. (3.14)

This equation can be considered as a multi dimensional generalisation of the Korteweg-de
Vries (KdV) equation. Originally the equation was proposed by Zakharov and Kuznetsov in
the 3D setting, see [66] to model waves in magnetized plazmas, the first rigorous derivation
was done by Lannes, Linares and Saut in [47] from the Euler-Poisson system. In 2D
the quadratic (p = 2) ZK equation governs, for example, weakly nonlinear ion-acoustic
waves in a plasma comprising cold ions and hot isothermal electrons in the presence of a
uniform magnetic field [52]. In [50] this equation appears as the amplitude equation for
two-dimensional long waves on the free surface of a thin film flowing down a vertical plane
with moderate values of the fluid surface tension and large viscosity.

From the local theory it follows that solutions to the ZK equation have a maximal
forward lifespan [0, T ) with either T = +∞ or T < +∞. In the later case in the 2D setting
one has ‖∇u(t)‖L2(R2) ↗∞ as t→ T , though the unbounded growth of the gradient might
also happen in infinite time.

During their existence, solutions to ZK have several conserved quantities, relevant to
this work is the L2 norm (or mass), and the energy (or Hamiltonian):

M [u(t)] =

∫
R2

u2(t) = M [u(0)],

E[u(t)] =
1

2

∫
R2

(
u2
x(t) + u2

y(t)
)
− 1

p+ 1

∫
R2

up+1(t) = E[u(0)]. (3.15)

Unlike the 1D KdV or modified KdV, the ZK equation is not integrable for any power p.

An important symmetry in the evolution equations is the scaling invariance, which
states that an appropriately rescaled version of the original solution is also a solution of
the equation. For the equation (3.14) it is

uλ(r, t) = λ
d
p−1u(λx, λy, λ3t). (3.16)

This symmetry makes invariant the Sobolev norm Ḣs with s = 1 − d
p−1 , since ‖uλ‖Ḣs =

λ
d
p−1

+s−1‖u‖Ḣs . Moreover, the index s gives rise to the critical-type classification of (3.14):
when s < 0, or p < d+ 1, the equation (3.14) is called the L2-subcritical equation (in this
paper a representative of this case is p = 2); if p > d + 1, or s > 0, the equation is
L2-supercritical (we use p = 4), and with p = d + 1, or s = 0, it is L2-critical. This
classification is important in the study of long time behaviour of solutions. For that we
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need the notion of solitons, as solutions in general position usually resolve to solitons and
radiation which is clearly distinct.

ZK equations have a family of localized travelling waves (or solitary waves, often referred
to as solitons), which travel only in x direction

u(x, r̄, t) = Q(x− ct, r̄) (3.17)

where r̄ = y in the 2D case and r̄ = (y, z) in the 3D case and Q satisfies

−cQ+ ∆Q+Qp = 0; (3.18)

and defining the ground state solution (i.e., the unique radial positive H1 solution vanishing
at infinity, for which the existence, uniqueness and various other properties are well-known,
see for example, [61]). We note that Q ∈ C∞(R2), ∂rQ(r) < 0 for any r = |(x, y)| > 0,
and that Q has exponential decay |∂αQ(x, y)| ≤ cα e

−r for any multi-index α and any
(x, y) ∈ R2. The solitons Qc(x, y) are related to the soliton Q1(x, y) =: Q(x, y) for c > 0
via

Qc(x, y) = c
1
p−1 Q(

√
c x,
√
c y), (3.19)

thus, it suffices to consider c = 1.

3.3.1 Results

In [36] we study the long term behaviour as well as critical phenomena for the 2D ZK
equation in the subcritical, critical and supercritical case. The reader is invited to look at
the aforementioned article, which contains a number of plots, giving flesh and blood to the
following conjectures:

Conjecture 7 (L2-subcritical case). Consider the subcritical 2D ZK equation, in particu-
lar, when p = 2 in (3.14).

1. The soliton solutions (3.17)-(3.18)-(3.19) are orbitally and asymptotically stable.

2. Solutions of (3.14) with general sufficiently localized initial data and of sufficient
smoothness decompose as t→∞ into solitons and radiation.

Conjecture 8 (L2-critical case). Consider the critical 2D ZK equation (3.14) with p = 3.

1. If u0 ∈ S(R2) is such that ‖u0‖2 < ‖Q‖2, then the solution u(t) to (3.14) is dispersed.

2. If u0 ∈ S(R2) is sufficiently localized and such that ‖u0‖2 > ‖Q‖2, then the solution
blows up in finite time t = t∗ and such that as t→ t∗

u(x, y, t)− 1

L(t)
Q

(
x− xm(t)

L(t)
,
y − ym(t)

L(t)

)
→ ũ ∈ L2, (3.20)

with

‖ux(t)‖2 ∼
1

L(t)
, L(t) ∼

√
t∗ − t, and xm(t) ∼ 1

t∗ − t
, ym(t)→ y∗ <∞. (3.21)
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Conjecture 9 (L2-supercritical case). Consider the supercritical 2D ZK equation, in par-
ticular, when p = 4 in (3.14). Let u0 ∈ S(R2) be of sufficiently large mass and energy and
of some localization. Then ZK evolution u(t) blows up in finite time t∗ and finite location
(x∗, y∗), i.e., the blow-up core resembles a self-similar structure with

u(x, y, t)− 1

L
2
p−1 (t)

P

(
x− xm(t)

L(t)
,
y − ym(t)

L(t)

)
→ ũ ∈ L2, (3.22)

where P (x, y) is a localized solution to (3.14) (which is conjectured to exist),

xm(t)→ x∗, ym(t)→ y∗,

and

‖ux(t)‖2 ∼
1

L
2
p−1 (t)

with L(t) ∼ (t∗ − t)1/3 as t→ t∗. (3.23)

The 3D case is considered in [37]. As 3D spatial discretisation requires significant
resources and blow-up tracking requires significant precision we only study the subcritical
case. The critical and supercritical are part of ongoing research. We propose the following
conjecture:

Conjecture 10. Consider the 3D ZK equation (3.14).

1. The soliton solutions (3.17)-(3.18) are orbitally and asymptotically stable.

2. Solutions of (3.14) with general sufficiently localized initial data and of sufficient
smoothness decompose as t→∞ into solitons and radiation.
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Chapter 4

Conclusion

We have presented two viewpoints on nonlinear partial differential equations that try to
understand some of the structures behind these equations and give a closer understanding
of the phenomena that occur. This work does not even pretend to be a beginning of a
comprehensive study of the subject.Large swathes of knowledge, important aspects and
approaches have been omitted or barely touched, for example classical PDE analysis, in-
verse problems and relation to physical applications and experiments, to name a few.

Many challenging questions remain. It is our conviction that approaches combining
analytical, numerical, technological knowledge have the best chance of surmounting the
difficulties along the way. This is the spirit this work aims to convey.

29
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Numerical Approach to Painlevé Transcendents on Unbounded Domains
SIGMA 14 (068) (2018)

[45] C. Klein, N. M. Stoilov,
Numerical study of the transverse stability of the Peregrine solution
arXiv:1911.00918 (2019)

[46] C. Klein, N. M. Stoilov, Multi-domain spectral approach for the Hilbert transform on
the real line, submitted to Zeitschrift für ange- wandte Mathematik und Physik.

[47] D. Lannes, F. Linares and J.-C. Saut, The Cauchy problem for the Euler-Poisson
system and derivation of the Zakharov-Kuznetsov equation, Prog. Nonlinear Diff. Eq.
Appl., 84 (2013), 181–213.

[48] H. Leblond, Electromagnetic waves in ferromagnets, J. Phys. A 32 (45) (1999), 7907-
7932.

[49] D. Lannes, Water waves: mathematical theory and asymptotics, Mathematical Sur-
veys and Monographs, vol 188 (2013), AMS, Providence.

[50] S. Melkonian and S. A. Maslowe, Two dimensional amplitude evolution equations for
nonlinear dispersive waves on thin films, Phys. D 34 (1989), pp. 255–269.



BIBLIOGRAPHY 35
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