Aller au menu Aller au contenu Aller à la recherche

Géométrie et Systèmes Dynamiques

Chercheurs et enseignants chercheurs permanents

François Blais (MCF), Christian Bonatti (DR), Thierry Combot (MCF), Olivier Couture (MCF), Frédéric Déglise (DR), Adrien Dubouloz (CR), Daniele Faenzi (PR), Philippe Glesser (MCF), Alain Jacquemard (PR), Pavao Mardesic (MCF-HDR), Gwénaël Massuyeau (PR), Soyoung Moon (MCF), Lucy Moser-Jauslin (PR), Johannes Nagel (PR), Luis Paris (PR), Rodolphe Ramanakoraisina (MCF), Jean-Philippe Rolin (MCF-HDR), Johan Taflin (MCF), Ronan Terpereau (MCF), Michele Triestino (MCF), Ricardo Uribe-Vargas (PR), Gioia Vago (MCF-HDR), Jean-Pierre Vannier (MCF), Emmanuel Wagner (MCF-HDR)

Gestionnaire de l’équipe

Nadia Bader

Membre émérites

Szymon Dolecki (PR émérite), Rémi Langevin (PR émérite), Robert Moussu (PR émérite), Robert Roussarie (PR émérite)

Doctorants

João Miranda Carnevale (oct. 2018, dir. C. Bonatti), Quentin Faes (oct. 2018, dir. G. Massuyeau), Mario Shannon (dec. 2016, dir. C. Bonatti)

Post-doctorants et ATER

Rémi Bignalet-Cazalet (ATER), Maria Cumplido Cabello (post-doctorante, enc. L. Paris), Delphine Moussard (post-doctorante, enc. G. Massuyeau).

Membres associés

Fabrice Castel, Emmanuel Dufraine, Jean-Claude Sifre, Guillaume Theret, Emmanuel Toinet

Les principaux axes de recherche de l’équipe peuvent être regroupés en trois sous-thèmes :

  • Géométrie algébrique ;
  • Systèmes dynamiques ;
  • Topologie et théorie des groupes.

Ces sous-thèmes ne sont pas disjoints et l’interaction entre les membres de l’équipe et, plus largement, de l’IMB, se fait entre autres par le biais du séminaire hebdomadaire GSD organisé par Frédéric Deglise et Gwénaël Massuyeau, qui se déroule le jeudi de 10h30 à 11h30.

Géométrie algébrique

Frédéric Déglise travaille sur la théorie inventée par Voevodsky, appelée A1-homotopie motivique, qui permet de transporter la topologie algébrique au monde de la géométrie algébrique, créant par la même occasion un cadre naturel à la théorie des motifs. Un exemple de champ d’application nouveau et prometteur de la théorie de Voevodsky est l’étude des propriétés des espaces affines exotiques complexes.
Par ailleurs, Jan Nagel s’intéresse au lien entre la théorie de Hodge et les motifs, notamment la décomposition Chow-Künneth du motif de Chow d’une variété algébrique projective, à sa version relative pour des familles de variétés au-dessus d’une base et aux liens avec la filtration par coniveau et la t-structure homotopique sur la catégorie triangulée des motifs mixtes.
Daniele Faenzi étudie les fibrés vectoriels et leurs espaces de modules au-dessus de variétés projectives. Il s’intéresse aux catégories dérivées des faisceaux cohérents, à leur structure et à leurs liens avec la géométrie des espaces de modules. Il étudie aussi certains fibrés ou faisceaux particuliers tels que des fibrés instantons et des faisceaux logarithmiques, notamment dans le cadre des arrangements d’hyperplans.
De plus, les techniques de la géométrie birationnelle s’appliquent naturellement, via la considération de compactifications adaptées, à l’étude de nombreuses questions de nature géométrique ou dynamique concernant les variétés quasi-projectives : étude de certaines classes de variétés affines uniréglées et de leurs compactifications, étude des automorphismes algébriques des variétés rationnelles en lien avec le groupe de Cremona, etc. Adrien Dubouloz et Ronan Terpereau travaillent sur ce thème de recherche.
Lucy Moser-Jauslin et Ronan Terpereau s’intéressent à la géométrie de certaines familles de variétés algébriques munies d’actions de groupes algébriques linéaires telles que les variétés sphériques, les T-variétés et les représentations linéaires. Ils considèrent ainsi leurs groupes d’automorphismes, leurs formes réelles, leurs déformations équivariantes, leurs espaces de modules, etc.
Adrien Dubouloz et Lucy Moser-Jauslin étudient aussi les actions du groupe additif sur les variétés affines et les dérivations localement nilpotentes sur leurs anneaux de fonctions. Cette étude est motivée par des problèmes issus de la géométrie affine tel que le « Problème de simplification de Zariski » qui demande si une variété dont le produit cartésien avec un espace affine est un espace affine est nécessairement un espace affine.
Comme évoqué précédemment, Adrien Dubouloz, Lucy Moser-Jauslin et Ronan Terpereau étudient les formes réelles de certaines familles de variétés algébriques. Adrien Dubouloz étudie aussi les difféomorphismes birationnels réels des « faux plans euclidiens réels » qui sont des surfaces algébriques complexes ayant l’homologie rationnelle du point, dont le lieu réel est homéomorphe à l’espace euclidien R2, mais qui ne sont pas algébriquement isomorphes à l’espace affine réel.
Enfin, Rémi Langevin, Ronan Terpereau et Ricardo Uribe-Vargas s’intéressent aux singularités quotients et aux singularités algébriques isolées : étude de la géométrie des feuilles d’un feuilletage près d’une singularité algébrique isolée, définition d’invariants numériques pour caractériser certains types de points singuliers, caractère symplectique des réductions symplectiques, etc.

Systèmes dynamiques

Christian Bonatti étudie les aspects qualitatifs globaux des systèmes dynamiques sur les variétés compactes. Plus précisément, il étudie les notions de structures hyperboliques faibles des systèmes dynamiques et leur lien avec la stabilité ou instabilité des systèmes. Il étudie aussi les actions de groupes finiment engendrés sur la droite et le cercle et le problème de classification topologique sous une hypothèse d’hyperbolicité.
Michele Triestino s’intéresse aux actions de groupes sur les variétés en relation avec la théorie des feuilletages et à des problèmes de rigidité dans le sens qu’on se demande à quel point la structure algébrique d’un groupe force le comportement dynamique.
Gioia Vago s’intéresse aux relations entre des aspects topologiques, algébriques, combinatoires et algorithmiques de systèmes dynamiques. En utilisant des outils spécifiques à la topologie de dimension 3 et en développant une combinatoire de graphes adaptée, elle étudie un invariant topologique, appelé nombre d’Ogasa, issu de la dynamiques de Morse.
Rémi Langevin travaille sur la définition fonctionnelle de l’entropie des applications et des feuilletages.
Pavao Mardesic et Jean-Philippe Rolin étudient les classes de fonctions naturellement associées aux systèmes dynamiques analytiques. Ensemble, ils collaborent sur un projet de classification analytique des applications de Dulac. Par ailleurs, Pavao Mardesic étudie l’holonomie et sa partie principale pour des déformations des systèmes intégrables, la période des systèmes.
Jean-Philippe Rolin étudie la géométrie analytique réelle et les structures o-minimales. Il a développé des méthodes permettant de montrer qu’une famille d’ensembles, issus de problèmes principalement liés aux équations différentielles analytiques, est o-minimale. Il a également appliqué ces méthodes à l’étude des intégrales oscillantes dont la phase et l’amplitude sont des fonctions sous-analytiques.
Robert Roussarie s’intéresse à la théorie des systèmes lents-rapides en dimension 2. Il s’’intéresse aussi aux applications de ces systèmes à la théorie du contrôle.
Thierry Combot étudie l’intégrabilité ou non-intégrabilité des systèmes dynamiques d’un point de vue algébrique (théorie de Morales-Ramis-Simo). Cela inclut le calcul des groupes dans la théorie de Galois différentiel et les équations de variation d’ordre supérieur.
Johan Taflin étudie la dynamique complexe à plusieurs variables avec des approches basées sur la théorie du pluripotentiel et la géométrie complexe d’un côté et sur la théorie ergodique et la dynamique réelle d’un autre côté.
Alain Jacquemard étudie les équations différentielles discontinues par des méthodes analytiques classiques et par des méthodes de géométrie algébrique effective.
Notons aussi la collaboration de Pavao Mardesic avec des physiciens sur les phénomènes qualitatifs en mécanique classique ou quantique notamment dans l’étude de la monodromie hamiltonienne et le phénomène de la raquette de tennis. Par ailleurs, Alain Jacquemard collabore sur des problèmes de contrôle optimal appliqués dans le domaine médical au moyen de calculs formels et simulations numériques.

Topologie et théorie des groupes

Dans l’approche géométrique de la théorie des groupes, Soyoung Moon s’intéresse à la moyennabilité des actions de groupes et des sous-groupes denses de groupes polonais.
La géométrie des groupes est aussi présente dans les travaux de Michele Triestino qui s’intéresse aux actions des groupes sur les variétés.
Les groupes de tresses constituent l’objet central des recherches de Luis Paris qui travaille sur nombre de leurs généralisations : groupes de difféotopie des surfaces, groupes de tresses des surfaces, groupes de tresses virtuelles, groupes d’Artin et groupes de Garside. Ses travaux en couvrent tous les aspects, tant combinatoires, que géométriques ou topologiques.
A partir d’objets algébriques tels que les groupes quantiques, on construit de manière combinatoire des invariants de nœuds ou des 3-variétés. La spécialité d’Emmanuel Wagner est la catégorification, qui offre de nouvelles perspectives pour une meilleure compréhension géométrique de ces invariants et leurs liens avec la dimension quatre.
Gwénaël Massuyeau travaille essentiellement sur les invariants de type fini des 3-variétés, auxquels on peut penser comme les développements en série des invariants quantiques. Il s’intéresse aux constructions universelles de tels invariants et à leur interprétation topologique.
Enfin, des travaux récents de Gioia Vago explorent la topologie des 3-variétés par des méthodes issues de la dynamique : elle y étudie le nombre d’Ogasa qui mesure la complexité topologique d’une variété en termes des niveaux réguliers d’une fonction de Morse.
Les aspects les plus généraux de la topologie sont traités par Szymon Dolecki qui s’intéresse principalement à la théorie des convergences.

Séminaire

Le séminaire hebdomadaire GSD, organisé par Frédéric Deglise et Gwénaël Massuyeau, se déroule le jeudi de 10h30 à 11h30.

Événements (colloques, écoles, etc.) depuis 2017

2017

  • Swiss-French Workshop on Algebraic Geometry, 6th edition, 9 – 13 janvier, 2017, Charmey, Switzerland (A Dubouloz, R. Terpereau, S. Zimmerman, J. Blanc, P. Habegger)
  • WinterBraids VII, 27 février – 2 mars, 2017, Caen, (Paolo Bellingeri, Vincent Florens, Jean-Baptiste Meilhan, Emmanuel Wagner)
  • The 15th Affine Algebraic Geometry Meeting, 2-5 mars, 2017, Kwansei Gakuin University, Osaka, Japan (A. Dubouloz, T. Kishimoto (Saitama), H. Kojima (Nigata) and K. Masuda (Osaka))
  • Mini-Workshop Algebraic Geometry, 23-24 mars 2017, Institut de Mathématiques de Bourgogne, Dijon (A Dubouloz, R. Terpereau)
  • Joint Seminar Basel-Dijon, 4th Edition, 9 – 10 mai, 2017, Basel (Suisse) (A. Dubouloz)
  • Dynamics Beyond uniform hyperbolicity, 5 – 16 juin 2017, Provo, Utah, USA (Bonatti, Burns, Diaz, Viana, Wilkinson, Wen, Fisher)
  • Summer School Current Topics in the Theory of Algebraic Groups, 3 – 7 juillet, 2017, Dijon, France (R. Bignalet-Cazalet, A Dubouloz D. Faenzi, L. Moser-Jauslin, R. Terpereau and E. Wagner)
  • Joint Seminar Basel-Dijon, 5th Edition, 11-12 septembre, 2017, (A. Dubouloz)

2018

  • Swiss-French Workshop on Algebraic Geometry, 7th edition J8 – 12 janvier 2018, Charmey (R. Terpereau)
  • Winter School Cohomology in Algebraic Geometry and Representation Theory, 5 – 9 février 2018, Freiburg, Allemagne (F. Déglise, B. Drew (Univ. Freiburg), M. Wendt (Univ. Freiburg)
  • The 16th Affine Algebraic Geometry Meeting, 8 – 11 mars, 2018, Osaka, Japon (A. Dubouloz, T. Kishimoto (Saitama), H. Kojima (Nigata) and K. Masuda (Osaka))
  • Mini-Workshop Algebraic Geometry, 29 – 30 mars 2018, Dijon (R. Terpereau, R. Bignalet-Cazalet, F. Déglise, A. Dubouloz)
  • Tresses Exceptionnelles, 4 – 6 juin, 2018, Dijon (D. Faenzi, E. Wagner)
  • Joint Seminar Basel-Dijon-EPFL, 22 – 26 octobre 2018, Dijon (A. Dubouloz, R. Terpereau)
  • Zagreb dynamical systems, 22- 26 octobre 2018, Zagreb, Croatie (P. Mardesic, M. Resman)
  • Journées de Géométrie Algébrique de Bourgogne, 24 – 25 octobre 2018, IMB, Dijon (R. Bignalet-Cazalet, A. Dubouloz, D. Faenzi)
  • Algebraic groups : Geometry, Actions and Structure, 29 octobre – 02 novembre, 2018, Lyon, France (R. Terpereau)
  • The universality of A1-motivic Stable homotopy following M. Robalo, 7-9 novembre 2018, Dijon (F. Déglise)
  • Workshop Explicit Birational and Affine Geometry in Saitama, 16 – 17 novembre 2018, Saitama, Japon (I. Cheltsov (Edinburg), A. Dubouloz, T. Kishimoto (Saitama))

2019

  • Swiss-French Workshop on Algebraic Geometry, 8th edition, 7 – 11 janvier 2019, Charmey (R. Terpereau)
  • Colloque en l’honneur de Lucy Moser pour son 60ème anniversaire, 27 – 29 mai 2019, IMB, Dijon (A. Dubouloz, F. Déglise, J. Nagel, D. Faenzi, R. Terpereau)
  • Joint Seminar Basel-Dijon-EPFL, 04 – 05 juin 2018, Basel, Suisse (A. Dubouloz, R. Terpereau)
  • Johnson homomorphisms and related topics (3rd edition), 13-17 mai 2019, Tokyo, Japon (S. Hikami, N. Kawazumi, G. Massuyeau, H. Nakamura, T.Sakasai, C. Vespa).
  • Topologie de basse dimension: colloque en l’honneur de Christian Blanchet, 11-12 juin 2019, Paris (C. Gille, G. Massuyeau, H. Queffelec, L.H. Robert).
  • Workshop « One-dimensional actions of 3-manifold groups », 4-8 novembre 2019, Dijon (M.Triestino, G. Vago, M. Wolff)
  • Workshop « Mapping class groups »  le lundi 10h30 à 12h00 en salle 318 ; organisateurs : G. Massuyeau, D. Moussard & L. Paris

Thèses soutenues depuis 2015

  • Charlie Petitjean, Actions hyperboliques de Gm sur des variétés affines : espaces exotiques et structures locales (2015, dir. A. Dubouloz, L. Moser-Jauslin)
  • Bruno Cisneros de la Cruz, Caractérisation topologique des tresses virtuelles (2015, dir. L. Paris)
  • Johann Bouali, Motifs de fibrés quadratiques et jacobiennes intermédiaires relatives des paires K3-Fano (2015, dir. J. Nagel, D. Markouchevitch)
  • Bachar Alhajjar, On locally nilpotent derivations of integral domains (2015, dir. L. Moser-Jauslin, A. Dubouloz)
  • Olivier Geneste, Représentations linéaires des groupes d’Artin (2016, dir. L. Paris)
  • Ben-Michael Kohli, Le polynôme de Links-Gould vu comme une généralisation du polynôme d’Alexander (2016, dir. P. Schauenburg, E. Wagner)
  • Jessie Diana Pontigo Herrera, Déformations des centres de Darboux, (2016, dir. P. Mardesic, L. Ortiz)
  • Jinhua Zhang, Dynamiques chaotiques et hyperbolicité partielles, (2017, dir. C. Bonatti, L. Wen)
  • Adriana Da Luz, Structures hyperboliques et propriétés robustes des flots singuliers, (2017, dir. C. Bonatti, M. Sambarino)
  • Diego Arcis, Ordering Garside groups (2017, dir. L. Paris)
  • Rémi Bignalet, Géométrie de la projectivisation des idéaux et applications aux problèmes de birationalité (2018, dir. A. Dubouloz, D. Faenzi)

Contrats de recherche

Une partie des membres de l’équipe sont rattachés au GDR 2945 « Singularités et applications » du CNRS (dir. A. Parusinski), d’autres au GDR 3064 « Géométrie Algébrique et Géométrie complexe » (dir. C. Mouragane), au GDR 2105 « Tresses et Topologie de basse dimension » (dir. G. McShane), au GDR 3395 « Théorie de Lie Algébrique et Géométrique » (dir. C. Bonnafé), au GDR 3341 « PLATON » (dir. B. Schapira), ainsi qu’aux GDRI GDRE « GRIFGA ».

Ronan Terpereau est porteur du projet ANR JC/JC FIBALGA, Adrien Dubouloz est membre du projet ANR JC/JC FIBALGA (dir. R. Terpereau), Johannes Nagel est membre du projet ANR HODGEFUN (dir. P. Eyssidieux), et Johan Taflin est membre du projet ANR JC/JC Fatou (dir. T. Gauthier).

Frédéric Déglise est porteur du projet « Motivic Invariants of Algebraic Varieties », ISITE-BFC Project ANR-lS-IDEX-OOOB auquel participe une partie des membres de l’équipe. Gwénaël Massuyeau est porteur du projet ANER « ITIQ-3D » financé par la Région Bourgogne Franche-Comté.

Tout l'agenda

  1. 13 Juin.

    Crochets topologiques et structures dans les espaces de modules

  2. 12 Sep.

    A préciser

  3. 19 Sep.

    A préciser

  4. Tout l'agenda
kc_data:
a:8:{i:0;s:0:"";s:4:"mode";s:2:"kc";s:3:"css";s:0:"";s:9:"max_width";s:0:"";s:7:"classes";s:0:"";s:9:"thumbnail";s:0:"";s:9:"collapsed";s:0:"";s:9:"optimized";s:0:"";}
kc_raw_content:

Log In

Create an account