Rechercher


Accueil

15 novembre 2017: 1 événement

  • Séminaires SPOC

    Mercredi 15 novembre 10:30-11:30 - XinXin CHEN - ICJ Université Lyon 1

    Long Brownian bridges in hyperbolic spaces converge to Brownian trees

    Résumé : We consider the long Brownian bridge started from the origin in hyperbolic space H^d and show that its range, after being suitably renormalised, converges in law to a Brownian continuum tree in the sense of Gromov-Hausdorff. The rough idea of the proof will be talked about, by presenting the convergence, obtained by Bougerol and Jeulin [1], of the radial part ; the invariance property of re-rooting and the hyperbolicity property. The similar idea will be applied to obtain the local convergence of the infinite Brownian loop in hyperbolic space.
    References
    [1] Bougerol, P. and Jeulin, T. (1999) Brownian bridge on hyperbolic spaces and on homogeneous trees. Probab. Theory Related Fields. 115(1), 95-120.

    En savoir plus : Séminaires SPOC

15 novembre 2017: 2 événements

  • Séminaires Math-Physique

    Mercredi 15 novembre 16:00-17:00 - Paolo Lorenzoni - Università Milano-Bicocca

    Séminaire Math-Physique : Paolo Lorenzoni

    Lieu : Salle A318

    En savoir plus : Séminaires Math-Physique
  • Séminaires Math-Physique

    Mercredi 15 novembre 17:00-18:00 - Boris Pawilovski - Université de Bourgogne

    Séminaire Math-Physique : Boris Pawilovski

    Lieu : Salle A318

    En savoir plus : Séminaires Math-Physique

15 novembre 2017: 1 événement

  • Séminaire étudiants

    Mercredi 15 novembre 14:15-15:15 - Rémi Bignalet - Université de Bourgogne

    Séminaire étudiants : An introduction to the Cayley-Bacharach theorems

    Résumé : Following the article Cayley-Bacharach theorems and conjectures by D.Eisenbud, M.Green and J.Harris, I will explain the evolution of a series of geometrical results beginning in the fourth century a.d. and known as Cayley-Bacharach theorems. One of this statement establish that if one takes two cubics in the complex projective planes meeting in nine distinct points p1 , . . . , p9 , then any other cubic containing eight of the nine points, for example p1 , . . . , p8, contains necessarily the ninth point p9 (Chasles’ theorem, XIXth century). After explaining the previous versions of this result and some tools necessary to understand it, I will state the more recent versions using the notion of Gorenstein ring and I’ll give some concrete examples to show the interest of such a generalization.

    Lieu : A318

    En savoir plus : Séminaire étudiants